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Abstract
The Riemann–Hilbert problem proposed in [2] for the integrable stimulated
Raman scattering (SRS) model was shown to be solvable under an additional
condition: the boundary data have to be chosen in such a way that a
corresponding spectral problem has no spectral singularities. In the general
case, it can be shown that a spectral singularity occurs at k = 0. On the
other hand, the initial boundary value (IBV) problem for the SRS equations is
known to be well posed: using PDE techniques, this has been established in
[3]. Therefore, it seems natural to try to find a new RH problem that is solvable
in the presence of arbitrary spectral singularities. The formulation of such a
RH problem is the main aim of the paper. Then the solution of the nonlinear
initial boundary value problem for the SRS equations is expressed in terms of
the solution of a linear problem which is the Riemann–Hilbert problem for a
sectionally analytic matrix function.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction

There are many publications devoted to the stimulated Raman scattering (SRS). Papers [1–3]
are on the subject of the present paper. The paper [1] deals with a problem of Raman soliton
generation from laser inputs in SRS. It was shown that the SRS equations, solved as a boundary
value problem on the semi-line, do induce the generation of solitons by pairs, and that, after the
passage of the pulses, the solitons are static in the medium. In particular, this paper provides
the derivation of the SRS equations when group velocity dispersion is taken into account. The
case of zero group velocity dispersion was studied in [2] under some additional assumptions
which lead to a model of transient SRS. More information about different models of the SRS
and their physical meaning can be found in references of the above cited papers.
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The phenomenon of stimulated Raman scattering is described by three coupled PDEs.
In the transient limit these equation are integrable. The relevant physical problem can be
formulated as initial boundary value problem (IBV) on a finite domain with trivial initial
function (identically equal zero). The general IBV problem can be written in the form

2iqt = µ, µx = 2iνq, νx = i(q̄µ − qµ̄), x ∈ (0, L), t ∈ (0, T ), (1)

with initial function

q(x, 0) = u(x), x ∈ [0, L], (2)

and boundary condition

µ(0, t) = w(t), ν(0, t) = v(t), t ∈ [0, T ]. (3)

Assuming that the functions q(x, t) ∈ C, µ(x, t) ∈ C, ν(x, t) ∈ R satisfy the
SRS equations (1) on the finite domain x, t ∈ ((0, L) × (0, T )), it has been shown [2] that
the solution of these equations can be obtained by solving a matrix Riemann–Hilbert (RH)
problem formulated in the complex k-plane. This was achieved by implementing a new
method introduced in [4]. The method consists of performing simultaneously the spectral
analysis of the two parts forming the Lax pair. It was also shown in [4] that the long-distance
behaviour of the system is described by the underlying self-similar solution connected with
the third Painleve transcendent. The Riemann–Hilbert problem, proposed in [2], is solvable
under the additional condition: boundary data v(t) and w(t) have to be chosen in such a way
that corresponding spectral problem has spectral singularities nowhere. If v(T ) �= −1, it is
easy to prove that the spectral singularity takes place at point k = 0. Besides, in the case of
frequency mismatch between the pump and Stokes waves the eigenfunctions and spectral data
have singularities that were also noted in [2]. On the other hand, the IBV problem for SRS
equations is well posed that was established in [3] using PDE techniques.

Therefore, it is necessary to find a new RH problem which will be solvable without such
a restriction, i.e. in the presence of arbitrary spectral singularities. We propose such a RH
problem in section 5. A formulation of the suitable RH problem is the main aim of the paper.
As a consequence of this formulation, the solution of nonlinear IBV problem (1)–(3) for SRS
equations is expressed through the solution of a linear problem: the Riemann–Hilbert problem
for sectionally analytic matrix functions (theorem 5.1).

Remark 1.1. The SRS equations admit a ‘conservation low’:

∂

∂x
(ν2(x, t) + |µ(x, t)|2) = 0.

In what follows, we will put

ν2(x, t) + |µ(x, t)|2 ≡ 1.

2. Basic solutions of linear overdetermined equations

For studying the initial boundary value problem (1)–(3), we will use the simultaneous spectral
analysis of the linear x-equation:

�x + ikσ3� = Q(x, t)�,

σ3 =
(

1 0
0 −1

)
, Q(x, t) =

(
0 q(x, t)

−q̄(x, t) 0

)
(4)
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and the linear t-equation

�t = i

4k
Q̂(x, t)�,

Q̂(x, t) =
(

ν(x, t) iµ(x, t)

−iµ̄(x, t) −ν(x, t)

)
,

(5)

where �(x, t, k) is a 2 × 2 matrix-valued function and k ∈ C is a parameter. It is easy to
verify that the overdetermined system of differential equations (4), (5) is compatible if and
only if the functions q(x, t), µ(x, t), ν(x, t) satisfy the SRS equations (1).

Let us rewrite equations (4) and (5) in the form

Wx = U(x, t, k)W, (6)

Wt = V (x, t, k)W, (7)

where U(x, t, k) and V (x, t, k) are matrices:

U(x, t, k) = Q(x, t) − ikσ3, V (x, t, k) = i

4k
Q̂(x, t),

given in terms of q(x, t), µ(x, t), ν(x, t).

Lemma 2.1. Let equations (7) and (8) be compatible for all k ∈ C. Let W(x, t, k) be a matrix
satisfying the x-equation (7) for all t (the t-equation (8) for all x). Assume that W(x0, t, k)

satisfies the t-equation (8) for some x = x0 (the x-equation (7) for some t = t0). Then
W(x, t, k) satisfies the t-equation (8) for all x (satisfies the x-equation (7) for all t).

Proof. If W = W(x, t, k) is a solution to (6), then Ŵ (x, t, k) = Wt − V (x, t, k)W is also
the solution to (6). Indeed, Ŵx = U(x, t, k)Ŵ + (Ut − Vx + [U,V ])W = U(x, t, k)Ŵ . Since
the matrices W and Ŵ are the solutions of the same equation (6), it follows that Ŵ (x, t, k) =
W(x, t, k)C(t, k) for some C(t, k) independent of x. By assumption, Ŵ (x0, t, k) = 0.
Hence, C(t, k) ≡ 0 and thus Ŵ (x, t, k) ≡ 0, which means that W(x, t, k) satisfies the
t-equation (7) for all x. The proof of the statement with x and t interchanged is similar. �

Let q(x, t), µ(x, t), ν(x, t) be a solution of (1). Introduce u(x) = µ(x, 0), w(t) =
µ(0, t) and v(t) = ν(0, t). Assume that u(x) ∈ H 1[0, L], w(t) ∈ H 1[0, T ] and
v(t) ∈ H 1[0, T ]. Also assume that v2(t) + |w(t)|2 ≡ 1. Then, equations (4) and (5)
(equivalently, equations (6) and (7)) are compatible. In order to construct basic solutions
(eigenfunctions) of (4), (5), let us define the matrix function md(x, t) by

md(x, t) = m(x, t)dσ3(x, t), (8)

where

m(x, t) = 1√
2


√

1 − ν(x, t)
iµ(x, t)√
1 − ν(x, t)

iµ̄(x, t)√
1 − ν(x, t)

√
1 − ν(x, t)


and the diagonal matrix function dσ3(x, t) is chosen in such a way that the matrix
m−1

d (x, t)ṁd(x, t) to be off-diagonal, i.e., σ3
(
m−1

d ṁdσ3 + σ3m
−1
d ṁd = 0

)
. Then, Q(x, t) can

be written in the form

Q(x, t) = m′
d(x, t)m−1

d (x, t).
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Here and in what follows, the dot and prime stand for the partial derivatives with respect to t
and x, respectively. Note that m(x, t) as well as md(x, t) diagonalizes Q̂(x, t):

Q̂(x, t) = −m(x, t)σ3m
−1(x, t) = −md(x, t)σ3m

−1
d (x, t).

By direct calculation,

d(x, t) = exp

{∫ x

0

ν(ξ, t)ν ′(ξ, t) + µ′(ξ, t)µ̄(ξ, t)

2ν(ξ, t)(1 − ν(ξ, t))
dξ

+
∫ t

0

ν(x, τ )ν̇(x, τ ) + µ̇(x, τ )µ̄(x, τ )

2(1 − ν(x, τ ))
dτ

}
, (9)

where d is normalized by d(0, 0) = 1. Note that due to the identity

ν2(x, t) + |µ(x, t)|2 ≡ 1,

the integrands in (9) are purely imaginary and thus |d(x, t)| ≡ 1.
Introduce Z(x, t, k) by

�(x, t, k) = md(x, t)Z(x, t, k),

where �(x, t, k) solves (4), (5). Then, Z(x, t, k) = m−1
d (x, t)�(x, t, k) satisfies the equations

Z′ + ikm−1
d (x, t)σ3md(x, t)Z = 0, Ż +

iσ3

4k
Z = −m−1

d (x, t)ṁd(x, t)Z. (10)

Equations (10) are gauge equivalent to (4), (5). The definition of the gauge equivalence
can be found in [6]. The first equation in (10) has a form of the x-equation of the continuous
model for the Heisenberg ferromagnet [6], whereas the second equation in (10) is the Dirac
equation with the spectral parameter λ = 1

4k
.

The original equations (4), (5) and the gauge equivalent equations (10) admit the
transformation operators [6, 5]: there are solutions �0(x, t, k) and �T (x, t, k) of equations
(4), (5), which have the integral representations in the form

�0(x, t, k) = md(x, t)Z0(x, t, k), �T (x, t, k) = md(x, t)ZT (x, t, k),

where

Z0(x, t, k) =
(

e−ikxσ3 + k

∫ x

−x

�(x, y, t) e−ikyσ3 dy

) (
e− itσ3

4k +
∫ t

−t

M0(t, s) e− isσ3
4k ds

)
, (11)

ZT (x, t, k) =
(

e−ikxσ3 + k

∫ x

−x

�(x, y, t) e−ikyσ3 dy

) (
e− itσ3

4k +
∫ 2T −t

t

MT (t, s) e− isσ3
4k ds

)
.

(12)

These solutions satisfy the conditions �0(0, 0, k) = md(0, 0) = m(0, 0) and �T (0, T , k) =
md(0, T ) e− iT σ3

4k . The first factor in formulae (11) and (12) satisfies the x-equation (10) for all t,
whereas the second factors satisfy the t-equation (10) for x = 0. By lemma (2), Z0(x, t, k) and
ZT (x, t, k) are the solutions of both the equations in (10) for all x and t. In turn, �0(x, t, k)

and �T (x, t, k) are the solutions of the original equations (4), (5). The existence of such
representations, i.e., the existence of appropriate k-independent kernels �(x, y, t),M0(t, s)

and MT (t, s), can be proved following the scheme in [6] and [5].
The integral representations (11) and (12) imply the following properties of the matrices

�0(x, t, k) and �T (x, t, k):

(1) �0(x, t, k) and �T (x, t, k) satisfy the x- and t-equations (4), (5);

(2) �(x, t, k) = 	�̄(x, t, k̄)	−1, k ∈ C\{0}, where 	 = (
0 1

−1 0

)
;
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(3) det �0(x, t, k) = det �T (x, t, k) ≡ 1, k ∈ C\{0};
(4) the map(x, t) �−→ �(x, t, k) is absolutely continuous in x for fixed t and vice versa;
(5) the map k �−→ �(x, t, k) is analytic in k ∈ C\{0};
(6) �0(x, t, k) e

itσ3
4k = md(x, t)+O(k)+O(k e

itσ3
2k ), k ∈ C\{0};�T (x, t, k) e

itσ3
4k = md(x, t)+

O(k) + O(k e
i(t−T )σ3

2k ), k ∈ C\{0}, k → 0

In items (2), (4) and (5), �(x, t, k) means �0(x, t, k) or �T (x, t, k). These eigenfunctions
possess a ‘good’ (well-controlled) asymptotic behaviour as k → 0; they will be used below
for the construction of the matrix Riemann–Hilbert problem in the neighbourhood of k = 0.

Now we introduce another set of eigenfunctions of equations (4), (5), which possess a
‘good’ asymptotic behaviour as k → ∞. The eigenfunction normalized by the condition

�1(0, T , k) = e− iT σ3
4k has the form

�1(x, t, k) =
(

e−ikxσ3 +
∫ x

−x

K(x, y, t) e−ikyσ3 dy

) (
e− itσ3

4k +
i

4k

∫ 2T −t

t

LT (t, s) e− isσ3
4k ds

)
,

(13)

where the first factor satisfies the x-equation (4) for all t, and the second factor satisfies the
t-equation (5) for x = 0. By lemma 2, �1(x, t, k) satisfies both equations (4) and (5). Since

�1(0, T , k) = e− iT σ3
4k and �T (0, T , k) = md(0, T ) e− iT σ3

4k , it follows that

�1(x, t, k) = �T (x, t, k) e
iT σ3

4k m−1
d (0, T ) e− iT σ3

4k .

Hence, �1(x, t, k) possesses properties (1)–(5).
The integral representation (13) implies the following behaviour of �1(x, t, k):

�1(x, t, k) eikxσ3 = I + O(k−1) + O(k−1 e2ikxσ3), k → ∞. (14)

The eigenfunction �2(x, t, k) normalized by the condition �2(0, 0, k) = I has the form

�2(x, t, k) =
(

e−ikxσ3 +
∫ x

−x

K(x, y, t) e−ikyσ3 dy

) (
e− itσ3

4k +
i

4k

∫ t

−t

L0(t, s) e− isσ3
4k ds

)
.

(15)

It is related to �0(x, t, k) by

�2(x, t, k) = �0(x, t, k)m−1(0, 0).

The eigenfunction �2(x, t, k) satisfies properties (1)–(5) and its asymptotic behaviour as
k → ∞ is as in (14). Alternatively, �2(x, t, k) can be represented in the form

�2(x, t, k) =
(

e− itσ3
4k +

i

4k

∫ t

−t

L(x, t, s) e− isσ3
4k ds

) (
e−ikxσ3 +

∫ x

−x

K(x, y, 0) e−ikyσ3 dy

)
.

(16)

This form will be used for the study of the x-equation for t = 0. The kernels
K(x, y, t), L0(t, s) = L(0, t, s), L(x, t, s) and K(x, y, 0) are absolutely continuous functions
on their arguments.

Finally, the eigenfunction �3(x, t, k) is normalized by the condition �3(L, 0, k) = eikLσ3

and has the representation

�3(x, t, k) =
(

e− itσ3
4k +

i

4k

∫ t

−t

L(x, t, s) e− isσ3
4k ds

) (
e−ikxσ3 +

∫ 2L−x

x

KL(x, y) e−ikyσ3 dy

)
.

(17)

The matrix �3(x, t, k) possesses properties (1)–(5); moreover,

�3(x, t, k) = I + O(k−1) + O(k−1 e2ik(x−L)σ3), as k → ∞. (18)
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Since all the introduced matrix-valued functions �j(x, t, k) (j = 1, 2, 3),�0(x, t, k) and
�T (x, t, k) are solutions of the x- and t-equations (4), (5), they are linear dependent, so there
exist transition matrices S(k), ST (k), R(k) and P(k) independent of x and t such that

�1(x, t, k) = �2(x, t, k)ST (k), �2(x, t, k) = �3(x, t, k)S(k),

�1(x, t, k) = �3(x, t, k)R(k), �T (x, t, k) = �0(x, t, k)P (k).
(19)

They can be written as follows:

S(k) = �−1
3 (0, 0, k), ST (k) = �1(0, 0, k),

R(k) = S(k)ST (k), P (k) = �−1
0 (0, 0, k)�T (0, 0, k).

The integral representations for the eigenfunctions imply the following integral
representations for the transition matrices:

S−1(k) =
(

ā(k̄) b(k)

−b̄(k̄) a(k)

)
= I +

∫ 2L

0
KL(0, y) e−ikyσ3 dy, (20)

ST (k) =
(

Ā(k̄) B(k)

−B̄(k̄) A(k)

)
= I +

i

4k

∫ 2T

0
LT (0, s) e− isσ3

4k ds, (21)

P(k) =
(

āP (k̄) bP (k)

−b̄P (k̄) aP (k)

)
= I +

∫ 2T

0
MT (0, s) e− isσ3

4k ds. (22)

These formulae give a complete description of the transition matrices in terms of their Fourier
transforms (in the last two cases, with respect to λ = 1

4k
): KL(0, y) ∈ H 1(0, L), LT (0, s) ∈

H 1(0, T ),MT (0, s) ∈ L2(0, T ).

Remark 2.1. If � is a 2 × 2 matrix we denote its columns by �−,�+, i.e. � = (�−,�+).

3. Spectral problem for the x-equation

The basic scattering relation for the x-equation (4) has the form

�2(x, 0, k) = �3(x, 0, k)S(k), (23)

where S(k) is defined by the second formula in (19).
Let u(x) ∈ H 1(0, L). Then, relation (23) defines a map

S : {u(x)} → {a(k), b(k)} (24)

by the formula(
b(k)

a(k)

)
= 
(0, k),

where the vector-function 
(x, k) := �+
3(x, 0, k) (the second column of the matrix

�3(x, t, k)) satisfies the equation


x + ikσ3
 = Q0(x)
, 0 < x < L, (25)

and the boundary condition


(L, k) e−ikL =
(

0
1

)
.

The matrix Q0(x) is defined by the initial function:

Q0(x) =
(

0 u(x)

−ū(x) 0

)
.
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Figure 1. The contour � for the x-problem.

Properties of the spectral data a(k) and b(k):

(1) a(k) and b(k) are entire analytic functions of the exponential type 2L represented in the
form

a(k) = 1 +
∫ 2L

0
α(y) eiky dy, b(k) =

∫ 2L

0
β(y) eiky dy,

where α(y), β(y) ∈ H 1(0, L);
(2) detS(k) := a(k)ā(k̄) + b(k)b̄(k̄) ≡ 1, k ∈ C;
(3) a(k) = 1 + O(k−1) + O(k−1 e2ikL), b(k) = O(k−1) + O(k−1 e2ikL), k → ∞.

The map Q, which is inverse to the map (24), can be written as follows:

u(x) = 2i lim
k→∞

kM
(x)
12 (x, k), (26)

where M
(x)
12 (x, k) is (12) entry of the matrix M(x)(x, k) that is the solution of the following

matrix Riemann–Hilbert problem (RHx):

• M(x)(x, k) = {M
(x)
− (x,k),k∈
−

M
(x)
+ (x,k),k∈
+

is a sectionally analytic matrix-valued function in k ∈ C\�,

where the oriented contour � (figure 1) in the complex k-plane is a union of real line R

and a circle S∞: S∞ = {k ∈ C : |k| = |S∞|}, where |S∞| is a sufficiently large positive
number. The orientation of � is chosen in such a way that k-plane is a union of the two
open domains 
± and their common boundary �:

C = 
+ ∪ 
− ∪ �, � = R ∪ S∞,


+ = {k ∈ C : |k| > |S∞|, Im k > 0} ∪ {k ∈ C, |k| < |S∞|, Im k < 0},

− = {k ∈ C : |k| > |S∞|, Im k < 0} ∪ {k ∈ C, |k| < |S∞|, Im k > 0}.

• det M(x)(x, k) ≡ 1.
• M

(x)
+ (x, k) = M

(x)
− (x, k)J (x)(x, k), k ∈ �,

where

J (x)(x, k) =



(
1 0

0 1

)
, k ∈ R, |k| < |S∞| 1 b(k)

a(k)
e−2ikx

b̄(k̄)

ā(k̄)
e2ikx 1

|a(k)|2

 , k ∈ R, |k| > |S∞|
(27)
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J (x)(x, k) =



(
1 b(k)

a(k)
e−2ikx

0 1

)
, |k| = |S∞|, arg k ∈ (0, π),(

1 0
b̄(k̄)

ā(k̄)
e2ikx 1

)
, |k| = |S∞|, arg k ∈ (π, 2π);

(28)

• M(x)(x, k) = I + O(k−1), k → ∞.
• Q : {a(k), b(k)} → {u(x)} is inverse to S.

Proof. Let the matrices M
(x)
± (x, k) be as follows:

M(x)
+ (x, k) =


(

�−
2 (x, 0, k) eikx,

�+
3(x, 0, k)

a(k)
e−ikx

)
, k ∈ C+, |k| > |S∞|(

�−
2 (x, 0, k) eikx, �+

2(x, 0, k) e−ikx
)
, k ∈ C−, |k| < |S∞|

M
(x)
− (x, k) =


(
�−

2 (x, 0, k) eikx, �+
2(x, 0, k) e−ikx

)
, k ∈ C+, |k| < |S∞|(

�−
3 (x, 0, k)

ā(k̄)
eikx, �+

2(x, 0, k) e−ikx

)
, k ∈ C−, |k| > |S∞|

where �−
2 (x, 0, k) and �−

3 (x, 0, k) are the eigenfunctions evaluated at t = 0. We choose the
radius |S∞| of the circle S∞ to be large enough so that a(k) �= 0 for Im k � 0 and ā(k̄) �= 0
for Im k � 0 when |k| > |S∞|. Then M

(x)
+ (x, k) is analytic in 
+ and M

(x)
− (x, k) is analytic

in 
−. For k ∈ R and |k| < |S∞|, the jump matrix J (x) is trivial: J (x)(x, k) ≡ I . For k ∈ R

and |k| > |S∞| it is easy to see that jump matrix J (x) coincides with (27). For |k| = |S∞|
and 0 < arg k < π it coincides with (28) as well as for |k| = |S∞| and π < arg k < 2π .
The large-k asymptotic formulae for the eigenfunctions given in section 2 imply the following
asymptotic expansion for the matrix M(x)(x, k):

M(x)(x, k) = I +
m(1)(x)

k
+ O

(
1

k2

)
, k → ∞.

Then, by (25), it follows that u(x) is related to M(x) by

u(x) = 2im(1)
12 (x) = 2i lim

k→∞
kM

(x)
12 (x, k). (29)

�

Now we show that relation (29) defines the map

Q : {a(k), b(k)} → {u(x)},
which is inverse to the spectral map (24):

S : {u(x)} → {a(k), b(k)}.
Consider the Riemann–Hilbert problem RHx with the jump matrix J (x)(x, k) constructed

by given spectral data {a(k), b(k)}. Then the following statement holds:
• The Riemann–Hilbert problem RHx has a unique solution.
• The matrices M

(x)
± (x, k) eikxσ3 , k ∈ 
±, satisfy the x-equation (25) with

Q0(x) =
(

0 u0(x)

−ū0(x) 0

)
,

where u0(x) ∈ H 1(0, L).

• The spectral functions a0(k) and b0(k) defined by u0(x) via the direct map coincide
with the spectral functions a(k) and b(k).
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The proof of these statements follows the same lines as for the whole line case, see, e.g.,
[6, 7]. Since a(k) and b(k) are entire analytic functions of the exponential type 2L, it follows
that the support of the function u0(x) is the interval [0, L]. To prove that the spectral functions
a0(k) and b0(k) coincide with, respectively, a(k) and b(k), we observe that the eigenfunction

0(x, k) of the x-equation normalized by the condition 
0(L, k) = e−ikLσ3 can be written in
the form


0(x, k) = M(x)
+ (x, k) eikxσ3C+(k),

where the matrix C+(k) is independent of x. Also observe that the Riemann–Hilbert problem
RHL(x = L) can be solved explicitly:

M
(x)
− (L, k) =



(
a(k) −b(k) e−2ikL

b̄(k̄) e2ikL ā(k̄)

)
, |k| < |S∞|, k ∈ C−,(

1
ā(k̄)

−b(k) e−2ikL

0 ā(k̄)

)
, |k| > |S∞|, k ∈ C−;

M(x)
+ (L, k) =



(
a(k) 0

b̄(k̄) e2ikL 1
a(k)

)
, |k| > |S∞|, k ∈ C+,(

a(k) −b(k) e−2ikL

b̄(k̄) e2ikL ā(k̄)

)
, |k| < |S∞|, k ∈ C+.

Therefore, since 
0(L, k) eikLσ3 = I , it follows that

C+(k) =



(
1

a(k)
0

−b̄(k̄) a(k)

)
, |k| > |S∞|, Im k = 0,(

ā(k̄) b(k)

−b̄(k̄) a(k)

)
, |k| < |S∞|, Im k = 0.

Hence, the spectral data,

S−1
0 (k) = 
−1

0 (0, k) :=
(

ā0(k̄) b0(k)

−b̄0(k̄) a0(k)

)
,

related to the function u0(x) (29) are defined by the equation

S−1
0 (k) = M(x)

+ (0, k)C+(k).

If x = 0, the above RH problem RHx |x=0 can also be solved explicitly. Indeed, since

J (x)(0, k) =
(

1 b(k)

a(k)

b̄(k̄)

ā(k̄)

1
|a(k)|2

)
=

(
1 0

b̄(k̄)

ā(k̄)
1

) (
1 b(k)

a(k)

0 1

)
,

it follows that M
(x)
+ (0, k) takes the form

M(x)
+ (0, k) =

(
1 b(k)

a(k)

0 1

)
, |k| > |S∞|, Im k > 0.

Therefore,

S−1
0 (k) = M(x)

+ (0, k)C+(k) =
(

1−|b(k)|2
a(k)

b(k)

−b̄(k̄) a(k)

)
= S−1(k),

i.e., a0(k) ≡ a(k) and b0(k) ≡ b(k) for |k| > |S∞| and Im k > 0 and thus for all k ∈ C.
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4. Spectral problem for the t-equation

The basic scattering relation for the t-equation (5) for x = 0 has the form

�1(0, t, k) = �2(0, t, k)ST (k). (30)

Let v(t), w(t) ∈ H 1(0, T ) be such that v2(t) + |w2(t)| ≡ 1. Then, relation (30) defines
the map

ST : {v(t), w(t)} → {A(k), B(k)} (31)

as follows: (
B(k)

A(k)

)
= 
̂+(0, k),

where the vector-function 
̂+(t, k) = �+
T (0, t, k) satisfies the equation


̂+
t = i

4k
Q̂(0, t)
̂+, t ∈ (0, T ), (32)

with the coefficient matrix

Q̂(0, t) =
(

v(t) iw(t)

−iw̄(t) −v(t)

)
and the initial condition: 
̂+(T , k) = e

iT σ3
4k .

Properties of the spectral data A(k) and B(k) (t-problem)

(1) A(k), B(k) are entire analytic functions of the exponential type 2T in the complex plane
λ = 1

4k
; they can be represented in the form

A(k) = 1 +
i

4k

∫ 2T

0
α̂(t) e

it
4k dt, B(k) = i

4k

∫ 2T

0
β̂(t) e

it
4k dt, (33)

where α̂(t), β̂(t) ∈ H 1(0, T );
(2) det ST (k) := A(k)Ā(k̄) + B(k)B̄(k̄) ≡ 1, k ∈ C\{0};
(3) A(k) = 1 + O(k−1), B(k) = O(k−1), k → ∞, k ∈ C.

Now observe that as k → 0,

A(k) = 1 − α̂(0) + α̂(2T ) e
iT
4k + O(k);

hence, in general, there exists a sequence kj ∈ C−∪R such that A(kj ) = 0 and limj→∞ kj = 0.
This implies that the map inverse to ST cannot be given in general in terms of a Riemann–
Hilbert problem constructed directly in terms of A(k) and B(k) because of the singularities of
1/A(k) near k = 0, which can accumulate at k = 0. Note, however, that under the additional
conditions (v(0) = v(T ) = −1, w(0) = w(T ) = 0) on the boundary data v(t) and w(t)

one can prove that A(k) = 1 + O(k), k → 0 and B(k) = O(k), k → 0. In the special case
when A(k) �= 0 for all k, the inverse map can be constructed by the same way as in [2].

In order to construct the inverse map in the general case, we introduce the auxiliary
spectral functions. Consider the solution �0(0, t, k) of the t-equation normalized by the
condition �0(0, 0, k) = m(0, 0) = m0. The matrix m0 ∈ SU(2) is completely defined by the
boundary data v(t) and w(t):

m0 = 1√
2

√
1 − v(0) iw(0)√

1−v(0)

iw̄(0)√
1−v(0)

√
1 − v(0)

 . (34)
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Figure 2. The contour � for t-problem.

Also consider the solution �T (0, t, k) of the t-equation normalized by the condition

�T (0, T , k) = md(0, T ) e− iT σ3
4k ). Let P(k) be the transition matrix relating these solutions:

�T (0, t, k) = �0(0, t, k)P (k). (35)

Since �1(0, T , k) = e− iT σ3
4k and �2(0, 0, k) = I , it follows that

P(k) = m−1(0, 0)ST (k) e
iT σ3

4k md(0, T ) e− iT σ3
4k . (36)

By (22) we have

P(k) =
(

āP (k̄) bP (k)

−b̄P (k̄) aP (k)

)
=

(
1 0
0 1

)
+ O(k) + O(k e− iT σ3

2k ), k → 0.

Summarizing, we have associated with the coefficient matrix Q̂(0, t) of the t-equation
two sets of spectral functions: the spectral functions A(k) and B(k) with well-controlled
asymptotic behaviour as k → ∞ and the spectral functions aP (k) and bP (k) with well-
controlled behaviour as k → 0. These spectral functions are related by (36). It follows from
(22) that aP (k) and bP (k) are entire analytic functions of λ = 1

4k
, of the exponential type 2T ,

which can be written in the form

aP (k) = 1 +
∫ 2T

0
α̃(t) e

it
4k dt, bP (k) =

∫ 2T

0
β̃(t) e

it
4k dt,

where α̃(t), β̃(t) ∈ L2(0, T ). Moreover,

aP (k)āP (k̄) + bP (k)b̄P (k̄) ≡ 1.

In order to formulate the Riemann–Hilbert problem RHt , we define the contour �

(figure 2) as follows:

� = R ∪ S0 ∪ S∞,

S0 = {k ∈ C : |k| = |S0| < 1},
S∞ = {k ∈ C : |k| = |S∞| > 1},

where |S0| > 0 is sufficiently small so that ap(k) �= 0 for |k| < |S0|, Im k < 0, and |S∞| > 0
is sufficiently large so that A(k) �= 0 for |k| > |S∞|, Im k < 0. The orientation of � is chosen
in such a way that the k-plane is a union of two open domains 
±:


+ = {k ∈ C : |k| > |S∞|, Im k > 0} ∪ {k ∈ C : |S0| < |k| < |S∞|, Im k < 0}
∪ {k ∈ C : |k| < |S0|, Im k > 0},


− = {k ∈ C : |k| > |S∞|, Im k < 0} ∪ {k ∈ C : |S0| < |k| < |S∞|, Im k > 0}
∪ {k ∈ C : |k| < |S0|, Im k < 0}.



14602 E A Moskovchenko and V P Kotlyarov

The inverse (to (21)) map QT can be written as follows:

Q̂(t) = −m(t)σ3m
−1(t),

where 2 × 2 matrix m(t) is defined by the solution of the following Riemann–Hilbert problem
RHt :

• M(t)(t, k) =
{

M
(t)
− (t, k), k ∈ 
−

M
(t)
+ (t, k), k ∈ 
+

is sectionally analytic matrix-valued function in k ∈ C\�.
• det M(t)(t, k) ≡ 1.
• M

(t)
+ (t, k) = M

(t)
− (t, k)J (t)(t, k), k ∈ �, where

J (t)(t, k) =



 1
|A(k)|2 −B(k)

A(k)
e− it

2k

− B̄(k̄)

Ā(k̄)
e

it
2k 1

 , k ∈ R, |k| > |S∞|,(
1 0

0 1

)
, k ∈ R, |S0| < |k| < |S∞|, 1

|aP (k)|2 − bP (k)

aP (k)
e− it

2k

− b̄P (k̄)

āP (k̄)
e

it
2k 1

 , k ∈ R, |k| < |S0|,

J (t)(t, k) =



(
1 0

− B̄(k̄)

Ā(k̄)
e

it
2k 1

)
, |k| = |S∞|, Im k > 0,(

1 −B(k)

A(k)
e− it

2k

0 1

)
, |k| = |S∞|, Im k < 0,

J (t)(t, k) =


e− it

4k
σ3m0

(
1 0

− b̄P (k̄)

āP (k̄)
1

)
e

it
4k

σ3 , |k| = |S0|, Im k > 0,

e− it
4k

σ3

(
1 − bP (k)

aP (k)

0 1

)
m−1

0 e
it
4k

σ3 , |k| = |S0|, Im k < 0,

where m0 is given by (34).

• M
(t)
± (t, k) = I + O(k−1), k → ∞.

• M
(t)
± (t, k) = m±(t) + O(k), k → 0, k ∈ 
±, where m+(t) = m−(t) = m(t) is a unitary

2 × 2 matrix.
• QT is inverse to ST (21).

Proof. Let matrices M
(t)
± (t, k) be as follows:

M(t)
+ (t, k) =


(

�−
1 (0,t,k)

Ā(k̄)
, �+

2(0, t, k)

)
e

itσ3
4k , |k| > |S∞|, Im k > 0,(

�−
T (0,t,k)

āP (k̄)
, �+

0(0, t, k)

)
e

itσ3
4k , |k| < |S0|, Im k > 0,

M(t)
+ (t, k) = M

(t)
− (t, k) = (

�−
2 (0, t, k), �+

2(0, t, k)
)

e
itσ3
4k , |S0| < |k| < |S∞|,

M
(t)
− (t, k) =


(
�−

2 (0, t, k),
�+

1 (0,t,k)

A(k)

)
e

itσ3
4k , |k| > |S∞|, Im k < 0,(

�−
0 (0, t, k),

�+
T (0,t,k)

aP (k)

)
e

itσ3
4k , |k| < |S0|, Im k < 0.

�
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The radius of the circle |S∞| (|S0|) is large (small) enough so that A(k) �= 0 for |k| > |S∞|,
Im k < 0 (aP (k) �= 0 for |k| < |S0|, Im k < 0). Then M

(t)
± (t, k) is analytic in 
±. The

scattering relation (30)

�−
1 (0, t, k)

Ā(k̄)
= �−

2 (0, t, k) − B̄(k̄)

Ā(k̄)
�+

2(0, t, k), k ∈ C+ ∪ R,

�+
1(0, t, k)

A(k)
= B(k)

A(k)
�−

2 (0, t, k) + �+
2(0, t, k), k ∈ C− ∪ R,

and relation (35)

�−
T (0, t, k)

āP (k̄)
= �−

0 (0, t, k) − b̄P (k̄)

āP (k̄)
�+

0(0, t, k),

�+
T (0, t, k)

aP (k)
= bP (k)

aP (k)
�−

0 (0, t, k) + �+
0(0, t, k)

written in the vector form imply that det M(t)
− (t, k) = det M(t)

+ (t, k) ≡ 1. These relations
define the jump matrix J (t)(t, k) for k ∈ �\S0. The jump matrix J (t)(t, k) for |k| = |S0|
emerges from the equation

�0(0, t, k) = �2(0, t, k)m(0, 0) = �2(0, t, k)m0.

The asymptotic behaviour of M
(t)
± (t, k) (as k → ∞ and as k → 0) follows from the asymptotic

formulae for the corresponding vector functions (see section 2) and the asymptotic behaviour
of the spectral functions A(k), Ā(k̄), aP (k) and āP (k̄). The matrices m±(t) are such that
m+(t) = m−(t) = md(0, t) = m(0, t)dσ3(0, t) ∈ SU(2). Thus, the coefficient matrix Q̂(0, t)

can be reconstructed by the formula

Q̂(t) = −m−(t)σ3m
−1
− (t) = −m+(t)σ3m

−1
+ (t) = −m(t)σ3m

−1(t). (37)

Now we show that formula (37) defines the map

QT : {A(k), B(k)} → {v(t), w(t)},
which is inverse to the spectral map (21):

ST : {v(t), w(t)} → {A(k), B(k)}.
The auxiliary spectral data aP (k) and bP (k) are given in terms of A(k) and B(k) by (36).
Following the general ideas of [6] and using the results of [7] for contours with self-

intersections, one can establish the following:

• The Riemann–Hilbert problem RHt has a unique solution.
• The matrices M

(t)
± (t, k) e− itσ3

4k , k ∈ 
±, satisfy the t-equation (5) with

Q̂(t) = −m(t)σ3m
−1(t).

• The matrix Q̂(t) is Hermitian, Sp Q̂(t) = 0, Q̂2(t) = I and Q̂(t) ∈ H 1(0, T ).
• The spectral functions A0(k) and B0(k) defined by the t-equation with the coefficient

matrix Q̂(t) coincide with the functions A(k) and B(k), respectively, i.e.

A0(k) ≡ A(k) B0(k) ≡ B(k).

The proof of the first three statements follows the same lines as in [6] and [7]. To prove the
last statement, we observe that solution �̂(t, k) of the t-equation normalized by the condition

�̂(T , k) = e− iT σ3
4k is related to M

(t)
+ (t, k) by the equation

�̂(t, k) = M(t)
+ (t, k) e− itσ3

4k D+(k), k ∈ 
+.
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For t = T , the Riemann–Hilbert problem RHt is explicitly solved. In particular, we have

M(t)
+ (T , k) =

(
1

Ā(k̄)
−B(k) e− iT

2k

0 Ā(k̄)

)
, |k| > |S∞|, Im k > 0.

Therefore,

D+(k) = e
iT σ3

4k

[
M(t)

+ (T , k)
]−1

e− iT σ3
4k =

(
Ā(k̄) B(k)

0 1
Ā(k̄)

)
.

Since ST
0 (k) = �̂(0, k), it follows that

ST
0 (k) = M(t)

+ (0, k)D+(k).

For t = 0, the Riemann–Hilbert problem RHt is also explicitly solved:

M(t)
+ (0, k) =

(
1 0

− B̄(k̄)

Ā(k̄)
1

)
, |k| > |S∞|, Im k > 0.

Therefore,

ST
0 (k) =

(
1 0

− B̄(k̄)

Ā(k̄)
1

) (
Ā(k̄) B(k)

0 1
Ā(k̄)

)
=

(
Ā(k̄) B(k)

−B̄(k̄) A(k)

)
= ST (k),

i.e., A0(k) = A(k) and B0(k) = B(k) for |k| > |S∞|, Im k > 0 and thus for all k ∈ C\{0}.

5. Inverse problem for the compatible x- and t-equations: reconstruction of the SRS
model

In this section, we give a reconstruction for the solution of the SRS equations in terms of
the spectral functions (a(k), b(k)) and (A(k), B(k)) associated with the initial and boundary
conditions. Under the assumption that x- and t-equations (4), (5) are fulfilled, relations (19)
can be written in the form of a matrix Riemann–Hilbert problem.

Let q(x, t), µ(x, t), ν(x, t) be absolutely continuous functions with respect to x ∈ [0, L]
and t ∈ [0, T ] satisfying the SRS equations (1), the initial conditions (2) and the boundary
conditions (3). Then relations (19) define a map

SR : {q(x, t), ν(x, t), µ(x, t)} → {a(k), b(k), A(k), B(k)}. (38)

To formulate the Riemann–Hilbert problem, we use the spectral functions
{a(k), b(k), A(k), B(k)}, the auxiliary spectral functions aP (k), bP (k), which are the entries
of the transition matrix P(k) (22), and the auxiliary spectral functions aR(k), bR(k), which
are the entries of the transition matrix R(k) = S(k)ST (k). The matrix P(k) is also defined by
ST (k) (36). In the particular case when v(0) = v(T ) = −1, we have P(k) = ST (k)dσ3(0, T ).

The auxiliary spectral data have the following properties:

(1) aR(k), bR(k), aP (k), bP (k) are analytic functions for k ∈ C\{0};
(2) aR(k)āR(k̄) + bR(k)b̄R(k̄) ≡ 1, aP (k)āP (k̄) + bP (k)b̄P (k̄) ≡ 1, k ∈ C\{0};
(3) aR(k) = 1 + O(k−1), k → ∞, Im k � 0, bR(k) = O(k−1), k → ∞, Im k = 0; aP (k) =

1 + O(k), bP (k) = O(k), k → 0, Im k � 0.

The inverse (to (38)) map QR is defined by

q(x, t) = 2i lim
k→∞

kM12(x, t, k), (39)

ν(x, t) = 1 − 2|m11(x, t)|2, (40)
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µ(x, t) = −2im11(x, t)m12(x, t), (41)

where mij (x, t) are the entries of the matrix

m(x, t) = lim
k→0

M(x, t, k),

and M(x, t, k) is the solution of the following Riemann–Hilbert problem RHxt :

• M(x, t, k) = {M−(x,t,k), k∈
−

M+(x,t,k), k∈
+

is sectionally analytic for k ∈ C\�, where the domains


± and the oriented contour � (figure 2) are the same as in the problem RHt ;
• det M(x, t, k) ≡ 1 for k ∈ C\�;
• M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ �, where

J (x, t, k) =



e−iθ

(
1 0

− b̄R(k̄)

āR(k̄)
1

)
eiθ , |k| = |S∞|, Im k > 0;

e−iθ

 1
|aR(k)|2 − bR(k)

aR(k)

− b̄R(k̄)

āR(k̄)
1

 eiθ , |k| > |S∞|, Im k = 0;

e−iθ

(
1 − bR(k)

aR(k)

0 1

)
eiθ , |k| = |S∞|, Im k < 0;

J (x, t, k) =
(

1 0
0 1

)
, |S0| < |k| < |S∞|, Im k = 0;

J (x, t, k) =



e−iθ

(
a(k) −b(k)

b̄(k̄) ā(k̄)

)
m0

(
1 0

− b̄P (k̄)

āP (k̄)
1

)
eiθ , |k| = |S0|, Im k > 0,

e−iθ

 1
|aP (k)|2 − bP (k)

aP (k)

− b̄P (k̄)

āP (k̄)
1

 eiθ , |k| < |S0|, Im k = 0;

e−iθ

(
1 − bP (k)

aP (k)

0 1

)
m−1

0

(
ā(k̄) b(k)

−b̄(k̄) a(k)

)
eiθ , |k| = |S0|, Im k < 0,

where θ = (kx + t
4k

)σ3 and m0 is defined by (34);
• M(x, t, k) = I + O(k−1), k → ∞;
• M±(x, t, k) = m±(x, t) + O(k), k → 0, where m+(x, t) = m−(x, t) = m(x, t) is a

unitary 2 × 2 matrix;
• QR is inverse to SR (38).

Proof. In order to construct the Riemann–Hilbert problem RHxt , we define the following
matrices:

M+(x, t, k) =


(

�−
1 (x,t,k)

āR(k̄)
, �+

3(x, t, k)

)
eiθ , |k| > |S∞|, Im k > 0,(

�−
T (x,t,k)

āP (k̄)
, �+

0(x, t, k)

)
eiθ , |k| < |S0|, Im k > 0,

M+(x, t, k) = M−(x, t, k) = �3(x, t, k) eiθ , |S0| < |k| < |S∞|,

M−(x, t, k) =


(
�3(x, t, k),

�+
1 (x,t,k)

aR(k)

)
eiθ , |k| > |S∞|, Im k < 0,(

�−
0 (x, t, k),

�+
T (x,t,k)

aP (k)

)
eiθ , |k| < |S0|, Im k < 0,
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where �∓
1 (x, t, k),�∓

3 (x, t, k), �∓
0 (x, t, k),�∓

T (x, t, k) are the vector columns of the matrices
�1(x, t, k),�3(x, t, k), �0(x, t, k),�T (x, t, k). The radius |S∞| (|S0|) of the circle S∞ (S0)

is sufficiently large (small) so that aR(k) �= 0 for |k| � |S∞|, Im k < 0 (aP (k) �= 0 for
|k| � |S0|, Im k < 0). Then, the matrices M±(x, t, k) are analytic functions in the domains

±. The determinants of these matrices are equal to 1, which follows from the vector relations

�−
1 (x, t, k) = āR(k̄)�−

3 (x, t, k) − b̄R(k̄)�+
3(x, t, k),

�+
1(x, t, k) = bR(k)�−

3 (x, t, k) + aR(k)�+
3(x, t, k),

�−
T (x, t, k) = āP (k̄)�−

0 (x, t, k) − bP (k)�+
0(x, t, k),

�+
T (x, t, k) = bP (k)�−

0 (x, t, k) + aP (k)�+
0(x, t, k),

arising from (19). Using these relations and

�0(x, t, k) = �3(x, t, k)S(k)m0,

the direct calculation gives the form of the jump matrix J (x, t, k) on the different parts of �.
The asymptotic formulae for M(x, t, k) as k → ∞ and k → 0 follow from the corresponding
equations for the eigenfunctions, see section 2, and from the asymptotic behaviour of the
spectral functions aR(k) and aP (k). Note that

M−(x, t, k) = md(x, t) + O(k), k → 0, Im k � 0,

M+(x, t, k) = md(x, t) + O(k), k → 0, Im k � 0,

where md(x, t) is the same unitary matrix (8).
As for the t-problem, the general ideas of [6] and the results of [7] for contours with

self-intersections imply the following statements:

• The Riemann–Hilbert problem RHxt has a unique solution.
• The matrices M±(x, t, k) e−ikxσ3− itσ3

4k for k ∈ 
± are absolutely continuous in x and t
and satisfy x- and t-equations with matrices Q(x, t) and Q̂(x, t), respectively, defined by
(39)–(41).

• q(x, t), ν(x, t), µ(x, t) are absolutely continuous and satisfy the SRS equations.
• The initial and boundary conditions are fulfilled, i.e. q(x, 0) = u(x), ν(0, t) = v(t),

µ(0, t) = w(t).
• The spectral functions a0(k), b0(k), A0(k) and B0(k) defined by q(x, t), ν(x, t) and

µ(x, t) via the direct spectral map coincide with a(k), b(k), A(k) and B(k), respectively.

The first three statements can be proved by the same scheme as in [6] with the
corresponding generalizations given in [7]. The fifth statement follows from the fourth one
and literally repeats the proofs of the corresponding statements in sections 3 and 4. To prove
the forth statement, we show that the Riemann–Hilbert problem RHxt for t = 0 is equivalent
to the Riemann–Hilbert problem RHx in the following sense: there exists a matrix G(x, k),
sectionally analytic in k, such as

M(x)(x, k) = M(x, 0, k)G(x, k)

and

G(x, k) = I +
D1

k
+

D2

k2
+ · · · + O

(
e−C(k)x

k

)
, k → ∞,

where D1,D2, . . . are constant diagonal matrices and C(k) is a positive function. Indeed,
define M̂(x, k) as follows:

M̂(x, k) =
{

M+(x, 0, k)G+(x, k), k ∈ 
+,

M−(x, 0, k)G−(x, k), k ∈ 
−,
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where

G+(x, k) = G−(x, k) = e−ikxσ3S(k) eikxσ3 , |S0| < |k| < |S∞|,

G+(x, k) = e−2ikxσ3

(
1 0

b̄P (k̄)

āP (k̄)
1

)
m−1

0 eikxσ3 , |k| < |S0|, Im k > 0,

G−(x, k) = e−2ikxσ3

(
1 − bP (k)

aP (k)

0 1

)
m−1

0 eikxσ3 , |k| < |S0|, Im k < 0,

G+(x, k) = e−ikxσ3

(
a(k) 0
B̄(k̄)

āR(k̄)

1
a(k)

)
eikxσ3 , |k| > |S∞|, Im k > 0,

G−(x, k) = e−ikxσ3

(
1

ā(k̄)
− B(k)

āR(k̄)

0 ā(k̄)

)
eikxσ3 , |k| > |S∞|, Im k < 0.

Then the matrix M̂(x, k) is analytic in 
±, and the jump matrix Ĵ (x, k) :=
M̂−1

− (x, k)M̂+(x, k)(k ∈ �) takes the form

Ĵ (x, k) = G−1
− (x, k)M−1

− (x, 0, k)M+(x, 0, k)G+(x, k) = G−1
− (x, k)J (x, 0, k)G+(x, k).

It is easy to verify that for k ∈ S0,

Ĵ (x, k) = e−ikxσ3S−1(k)S(k)m0

(
1 0

− b̄P (k̄)

āP (k̄)
1

) (
1 0

b̄P (k̄)

āP (k̄)
1

)
m−1

0 eikxσ3 = I

for Im k > 0 and

Ĵ (x, k) = e−ikxσ3m0

(
1 bP (k)

aP (k)

0 1

)(
1 − bP (k)

aP (k)

0 1

)
m−1

0 S−1(k)S(k) eikxσ3 = I

for Im k < 0. For k ∈ S∞, we have

Ĵ (x, k) = e−ikxσ3

(
ā(k̄) b(k)

−b̄(k̄) a(k)

) (
1 0

− b̄R(k̄)

āR(k̄)
1

) (
a(k) 0
B̄(k̄)

āR(k̄)

1
a(k)

)
eikxσ3

=
(

1 b(k)

a(k)
e−2ikx

0 1

)
for Im k > 0 and

Ĵ (x, k) = e−ikxσ3

(
ā(k̄) B(k)

aR(k)

0 1
ā(k̄)

)(
1 − bR(k)

aR(k)

0 1

) (
a(k) −b(k)

b̄(k̄) ā(k̄)

)
eikxσ3

=
(

1 0
b̄(k̄)

ā(k̄)
e2ikx 1

)
for Im k < 0.

Finally, for k ∈ R and |k| > |S∞|

Ĵ (x, k) = e−ikxσ3

(
ā(k̄) B(k)

aR(k)

0 1
ā(k̄)

)(
1

|aR(k)|2 − bR(k)

aR(k)

− b̄R(k̄)

āR(k̄)
1

)(
a(k) 0
B̄(k̄)

āR(k̄)

1
a(k)

)
eikxσ3

=
(

1 b(k)

a(k)
e−2ikx

b̄(k̄)

ā(k̄)
e2ikx 1

|a(k)|2

)
.
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Since the matrix M̂(x, k) is continuous across k ∈ S0 (Ĵ (x, k) = I, k ∈ S0) and thus is
analytic everywhere except onS∞ and (−∞,−|S∞|)∪(|S∞|,∞), where Ĵ (x, k) ≡ J (x)(x, k)

according to (27), we conclude that M̂(x, k) ≡ M(x)(x, k).
Now we show that q(x, 0) = u(x). Indeed, the following expansions

M(x, t, k) = I +
M1(x, t)

2ik
+ O(k−2), k → ∞

M(x)(x, k) = M̂(x, k) = I +
M̂1(x)

2ik
+ O(k−2), k → ∞

give the equations

q(x, t) = M1
12(x, t), u(x) = M̂1

12(x). (42)

Since M(x)(x, k) = M(x, 0, k)G(x, k)(k ∈ 
+) and

G(x, k) = I +
D1

k
+

D2

k2
+ · · · + O

(
e−2 Im kx

|k|
)

, k → ∞ (Im k > 0),

where D1,D2, . . . are diagonal constant matrices, we find

M̂1(x) = M1(x, 0) + 2iD1.

Then, equations (42) yield

u(x) = M̂1
12(x) = M1

12(x, 0) = q(x, 0).

Thus, the problem RHxt |t=0 is equivalent to the problem RHx .
The proof of the equivalence between the Riemann–Hilbert problem RHxt |x=0 and the

Riemann–Hilbert problem RHt is as follows. Let

N±(t, k) = M±(0, t, k)H±(t, k),

where

H+(t, k) = H−(t, k) = I, |k| < |S0|;
H+(t, k) = H−(t, k) = e− itσ3

4k S(k) e
itσ3
4k , |S0| < |k| < |S∞|;

H+(t, k) =
(

āR(k̄)

Ā(k̄)
−b(k) e− it

2k

0 Ā(k̄)

āR(k̄)

)
, |k| > |S∞|, Im k > 0,

H−(t, k) =
(

A(k)

aR(k)
0

b̄(k̄) e
it
2k

aR(k)

A(k)

)
, |k| > |S∞|, Im k < 0.

The matrices N±(t, k) are analytic in 
± and corresponding jump matrix J̃ (t, k) :=
N−1

− (t, k)N+(t, k) takes the form
J̃ (t, k) = H−1

− (t, k)M−1
− (0, t, k)M+(0, t, k)H+(t, k) = H−1

− (t, k)J (0, t, k)H+(t, k).

As above, it is easy to verify that J̃ (t, k) = J (t)(t, k) for k ∈ S0 and for {|k| <

|S0|} ∩ {Im k = 0}. For {|S0| < |k| < |S∞|} ∩ {Im k = 0},

J̃ (t, k) = e− itσ3
4k S−1(k) e

itσ3
4k I e− itσ3

4k S(k) e
itσ3
4k = I.
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For |k| = |S∞|, we find

J̃ (t, k) = e− itσ3
4k

(
aR(k)

A(k)
0

−b̄(k̄) A(k)

aR(k)

) (
1 − bR(k)

aR(k)

0 1

) (
a(k) −b(k)

b̄(k̄) ā(k̄)

)
e

itσ3
4k

=
(

1 −B(k)

A(k)
e− it

4k

0 1

)
, Im k < 0;

J̃ (t, k) = e− itσ3
4k

(
ā(k̄) b(k)

−b̄(k̄) a(k)

) (
1 0

− bR(k)

aR(k)
1

)(
āR(k̄)

Ā(k̄)
−b(k)

0 Ā(k̄)

āR(k̄)

)
e

itσ3
4k

=
(

1 0

− B̄(k̄)

Ā(k̄)
e

it
4k 1

)
, Im k > 0.

Finally, for |k| > |S∞| we have

J̃ (t, k) = e− itσ3
4k

(
aR(k)

A(k)
0

−b̄(k̄) A(k)

aR(k)

) ( 1
|aR(k)|2 − bR(k)

aR(k)

− bR(k)

aR(k)
1

) (
āR(k̄)

Ā(k̄)
−b(k)

0 Ā(k̄)

āR(k̄)

)
e

itσ3
4k

=
 1

|A(k)|2 −B(k)

A(k)
e− it

4k x

− B̄(k̄)

Ā(k̄)
e

it
4k 1

 , Im k = 0.

The last equations show that J̃ (t, k) ≡ J t (t, k) for k ∈ �. Therefore, the problem RHxt for
x = 0 and the problem RHt are equivalent in the same sense as above. Further, the asymptotic
relations

N(t, k) = m0(t) + O(k),

M(0, t, k) = m(0, t) + O(k),

H(t, k) = I + O(k e
−t Im k

|k2 | )

are fulfilled as k → 0 (Im k > 0). Taking into account the following formulae

Q̂(t) = −m0(t)σ3m
−1
0 (t), m0(t) = lim

k→0
M(t)(t, k) = lim

k→0
N(t, k)

Q̂(x, t) = −m(x, t)σ3m
−1(x, t),m(x, t) = lim

k→0
M(x, t, k)

we obtain

Q̂(0, t) = −m(0, t)σ3m
−1(0, t) = −m0(t)σ3m

−1
0 (t) = Q̂(t),

i.e., µ(0, t) = w(t) and ν(0, t) = v(t). �

Now we formulate the main result of the paper.

Theorem 5.1. Let u(x) ∈ H 1(0, L), v(t), w(t) ∈ H 1(0, T ) and v2(t) + |w(t)|2 ≡ 1. Then,
the Riemann–Hilbert problem RHxt has a unique solution M(x, t, k), and the functions
q(x, t), ν(x, t) and µ(x, t) defined by the equations

q(x, t) = 2i lim
k→∞

kM12(x, t, k),

ν(x, t) = 1 − 2|m11(x, t)|2,
µ(x, t) = −2im11(x, t)m12(x, t),

where

m(x, t) = lim
k→0

M(x, t, k),



14610 E A Moskovchenko and V P Kotlyarov

satisfy the SRS equations (1), the initial condition

q(x, 0) = u(x), x ∈ (0, L)

and boundary conditions

ν(0, t) = v(t), µ(0, t) = w(t), t ∈ (0, T ).
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